๐Ÿง 
๐Ÿค–
๐Ÿ“Š
โšก

AI-Powered CRM

Next-Generation Sales Intelligence with RAG-Enhanced AI

Project Highlights

4
AI Features
85%
Test Coverage
500
Daily AI Requests
1536
Vector Dimensions

๐Ÿค– Core AI Features

๐Ÿง 

Deal Coach AI

Intelligent deal progression assistant that analyzes historical patterns and provides actionable next steps with confidence scores.

๐Ÿ‘ค

Persona Builder

AI-powered behavioral analysis that automatically generates comprehensive customer profiles from interaction patterns.

๐Ÿ›ก๏ธ

Objection Handler

Smart response generation system that provides contextual, multi-angle approaches to customer objections.

๐Ÿ“Š

Win/Loss Explainer

Deal outcome analysis engine that provides comprehensive insights to improve future sales performance.

๐Ÿ—๏ธ System Architecture

graph TB subgraph "Frontend Layer" UI[Next.js UI Components] AI_COMP[AI Feature Components] DASH[Dashboard & Analytics] end subgraph "API Gateway" AUTH[Authentication Middleware] RATE[Rate Limiting] VALID[Input Validation] end subgraph "Business Logic Layer" AI_CTRL[AI Controller] DEAL_CTRL[Deal Controller] CONTACT_CTRL[Contact Controller] end subgraph "AI Services Layer" AI_SVC[AI Service] RAG_SVC[RAG Indexing Service] VECTOR_SVC[Vector Service] CONTENT_FILTER[Content Filter] end subgraph "External AI Services" OPENAI[OpenAI GPT-4 API] EMBED[OpenAI Embeddings API] end subgraph "Data Layer" MONGO[(MongoDB)] CHROMA[(ChromaDB Vector Store)] CACHE[Redis Cache] end UI --> AUTH AI_COMP --> AUTH DASH --> AUTH AUTH --> RATE RATE --> VALID VALID --> AI_CTRL VALID --> DEAL_CTRL VALID --> CONTACT_CTRL AI_CTRL --> AI_SVC AI_CTRL --> RAG_SVC AI_SVC --> VECTOR_SVC AI_SVC --> CONTENT_FILTER AI_SVC --> OPENAI VECTOR_SVC --> EMBED VECTOR_SVC --> CHROMA RAG_SVC --> VECTOR_SVC RAG_SVC --> MONGO DEAL_CTRL --> MONGO CONTACT_CTRL --> MONGO AI_SVC --> CACHE classDef frontend fill:#e1f5fe classDef api fill:#f3e5f5 classDef business fill:#e8f5e8 classDef ai fill:#fff3e0 classDef external fill:#ffebee classDef data fill:#f1f8e9 class UI,AI_COMP,DASH frontend class AUTH,RATE,VALID api class AI_CTRL,DEAL_CTRL,CONTACT_CTRL business class AI_SVC,RAG_SVC,VECTOR_SVC,CONTENT_FILTER ai class OPENAI,EMBED external class MONGO,CHROMA,CACHE data

๐Ÿ” RAG Implementation Flow

sequenceDiagram participant User participant Frontend participant AI_Controller participant AI_Service participant Vector_Service participant ChromaDB participant OpenAI participant MongoDB User->>Frontend: Request AI Suggestion Frontend->>AI_Controller: API Call with Context AI_Controller->>AI_Service: Process Request Note over AI_Service: Rate Limit Check (100/day) AI_Service->>AI_Service: Check Cache alt Cache Miss AI_Service->>Vector_Service: Search Similar Context Vector_Service->>OpenAI: Generate Query Embedding OpenAI-->>Vector_Service: Embedding Vector Vector_Service->>ChromaDB: Similarity Search ChromaDB-->>Vector_Service: Top 5 Similar Records Vector_Service-->>AI_Service: RAG Context AI_Service->>OpenAI: Generate Response with Context OpenAI-->>AI_Service: AI Response AI_Service->>AI_Service: Cache Response else Cache Hit AI_Service->>AI_Service: Return Cached Response end AI_Service->>MongoDB: Log AI Request AI_Service-->>AI_Controller: Structured Response AI_Controller-->>Frontend: JSON Response Frontend-->>User: Display AI Suggestions

๐Ÿ”„ AI Processing Pipeline

1

User Request & Authentication

User submits AI request through the frontend. System validates JWT token and checks user permissions.

2

Rate Limiting & Content Filtering

System checks daily AI usage limit (500 requests) and filters content for safety and appropriateness.

3

RAG Context Retrieval

Vector database searches for similar historical data using OpenAI embeddings and cosine similarity.

4

AI Response Generation

GPT-4 generates contextual response using RAG data, with confidence scoring and structured output.

๐Ÿ—„๏ธ Vector Database Collections

flowchart TD A[New CRM Data] --> B{Data Type?} B -->|Deal Closed| C[Extract Deal Context] B -->|Objection Resolved| D[Extract Objection Pattern] B -->|Interaction Logged| E[Extract Communication Pattern] C --> F[Generate Deal Summary] D --> G[Generate Objection Summary] E --> H[Generate Interaction Summary] F --> I[OpenAI Embedding API] G --> I H --> I I --> J[1536-dim Vector] J --> K{Store in ChromaDB} K --> L[historical_deals Collection] K --> M[objection_responses Collection] K --> N[customer_interactions Collection] L --> O[Available for Deal Coach] M --> P[Available for Objection Handler] N --> Q[Available for Persona Builder] style A fill:#e3f2fd style I fill:#fff3e0 style K fill:#f3e5f5

๐ŸŽฏ Key Vector Database Features:

  • 4 Specialized Collections: Deals, Objections, Interactions, Personas
  • Weighted Similarity: Industry (40%), Deal Size (30%), Objection Type (30%)
  • Real-time Indexing: Automatic background processing
  • Metadata Filtering: Time-based and contextual constraints

๐Ÿ’ป Technology Stack

๐ŸŽจ Frontend

Next.js 15.3.3, React 19, Tailwind CSS, ShadCN UI

โš™๏ธ Backend

Node.js 18+, Express.js, MongoDB, Mongoose ODM

๐Ÿค– AI & ML

OpenAI GPT-4, text-embedding-3-small, ChromaDB

๐Ÿ”’ Security

JWT Authentication, bcrypt, Helmet.js, Rate Limiting

๐Ÿงช Testing

Jest, Supertest, React Testing Library, 85% Coverage

๐Ÿš€ Deployment

Docker, Vercel, MongoDB Atlas, ChromaDB Cloud

๐Ÿ“Š Sample AI Response

{ "success": true, "data": { "suggestions": [ { "action": "Schedule decision-maker call", "priority": "high", "confidence": 85, "reasoning": "Based on 3 similar $50K+ deals that closed after executive involvement" }, { "action": "Send detailed ROI analysis", "priority": "medium", "confidence": 72, "reasoning": "2 similar deals in your industry closed after ROI presentation" }, { "action": "Follow up on technical questions", "priority": "low", "confidence": 65, "reasoning": "Standard follow-up for this stage" } ], "ragContext": [ { "similarity": 0.89, "industry": "SaaS", "outcome": "closed_won", "value": 45000 } ], "confidence": 85, "timestamp": "2024-01-15T10:30:00Z" } }

๐ŸŽฎ Try the Interactive Demo

Experience the AI-powered CRM features in action